INTERNETWORKING
(VIRTUAL)

PURPOSE
To evaluate each contestant’s preparation for employment and to recognize outstanding students for excellence and professionalism in the field of internetworking.

ELIGIBILITY
Open to all active SkillsUSA members currently enrolled in courses.

The contestant’s number must be visible at all times.

CLOTHING REQUIREMENTS
Contest Clothing Notes (Apply ONLY to Virtual Competitions):

- Official NYS SkillsUSA Competition Clothing recommended but NOT required.
- Contestant clothing options include the following:
  - Official Competition Clothing.
  - Trade Appropriate Clothing.
  - Professional Dress.
  - Business Casual.
- Clothing must meet industry safety standards.
- No identification of the contestant, school or state is allowed on clothing.
- No offensive, vulgar or inappropriate images or text are allowed on contestants clothing.
- No shorts or sleeveless shirts are allowed.
- Skirts must be at least knee-length.
- Proper Personal Protective Equipment (PPE) must be worn by contestant to meet all state, local and school requirements due to COVID-19.
- Scoring deductions may only be given and/or disqualification of contestant if clothing safety standards are not met.

Supplied by contestant:
1. Computer with high-speed internet capability and camera to use applications such as Zoom, Teams, etc. The minimum recommended internet bandwidth speeds for joining Zoom meetings, accessing on-demand curriculum and other online operations is 2.0 Mbps up and down. You can test your current internet speeds by following this link: www.speedtest.net/. Allow the page to load and click on GO.
2. A secondary camera(s) may be required to provide judges with the ability to view contestants from different angles. Additional camera requirements will be located on the NYS SkillsUSA website.
3. A contest Proctor will be required to be on site to assist judges. A local industry expert is preferred to serve as the Proctor and shall not be an individual that has been involved with the training of the contestant(s). The Proctor will serve as the onsite “hands and eyes” for the judges. Proctor will follow instructions from the judges for safety and operations related to the competition. Proctor may be asked by judges to perform several tasks such as operating a portable camera to show specific components or steps, measure parts, or any task that will provide judges with information needed to assist in accurate scoring of the contestant’s work or presentation. However, the Proctor shall not serve as a judge nor have any influence on contestant scores.
4. The contestant’s instructor or advisor shall be on site to observe all competition activities to ensure a safe and healthy competition experience for all participants. That instructor or advisor will not be allowed to interact or interfere with the competitor unless a safety issue arises that requires interaction. Any other support or interaction between the contestant and the instructor/advisor will result in disqualification. Tools necessary to connect to a router or switch via an RS232 console connection (USB to serial adapter and console cable).
5. Cisco routers, switches and equipment not listed as supplied by the contestant.
Scope of the Contest

The contest is defined by industry standards as set by the current industry technical standards. The contest will consist of five parts: An end-to-end network configuration, a troubleshooting exercise, a simulation TAC call, a written exam, and a design project.

Knowledge Performance

The contest will include a written knowledge exam assessing knowledge of general networking concepts.

Skill Performance

The contest may include but is not limited to the following assessments.

Design problem — Contestants will be evaluated on their ability to design a network that meets specific requirements. If a network design problem is in use this year it will be posted on the Facebook page and via the SkillsUSA Internetworking Competition page in Remind by the Thursday prior to the competition’s start.

End-To-End Networking — Given a set of networking equipment (cable, fiber, hubs/switches routers, etc.) the student must, in a finite amount of time, install or repair a network and demonstrate that the installation properly runs internet applications. Given a logical topology and network requirements, the students will be able to develop a usable network that meets or exceeds the documentation provided. The vision and context are that client companies would request a demonstration booth that runs a particular internet application, and the student, given equipment and tools, would provide the appropriate connectivity for the application to run successfully.

Technical Assistance Call — The student must solve a networking problem while on the phone with a customer. This is a simulation of working in a Technical Assistance Center.

Written Exam — The student must answer questions related to CCNA-level networking.

Troubleshooting — Contestants will be evaluated on their ability to troubleshoot and correct issues in an already existing network.

Standards and Competencies

Note for Virtual Competitions: Contestants may not be required to perform all the standards and competencies listed in this section. However, contestants should be prepared to perform components in all areas. Prior to the competition, the technical committee may determine which standards and competencies contestants will be perform for the virtual contests. The technical committee will determine if additional information is needed for contestants prior to the competition. These changes will be posted on the SkillsUSA Championships contest update website at: http://updates.skillsusa.org.

WORK 1.0 — Network Fundamentals

1.1 Compare and contrast OSI and TCP/IP models
1.2 Compare and contrast TCP and UDP protocols
1.3 Describe the impact of infrastructure components in an enterprise network
  1.3.1 Firewalls
  1.3.2 Access points
  1.3.3 Wireless controllers
1.4 Describe the effects of cloud resources on enterprise network architecture
  1.4.1 Traffic path to internal and external cloud services
  1.4.2 Virtual services
  1.4.3 Basic virtual network infrastructure
1.5. Compare and contrast collapsed core and three-tier architectures
1.6. Compare and contrast network topologies
  1.6.1 Star
  1.6.2 Mesh
  1.6.3 Hybrid
1.7. Select the appropriate cabling type based on implementation requirements
1.8. Apply troubleshooting methodologies to resolve problems
  1.8.1 Perform and document fault isolation
  1.8.2 Resolve or escalate
  1.8.3 Verify and monitor resolution
1.9. Configure, verify, and troubleshoot IPv4 addressing and subnetting
1.10. Compare and contrast IPv4 address types
  1.10.1 Unicast
  1.10.2 Broadcast
2.7. Configure, verify, and troubleshoot STP protocols
2.6.1 STP mode (PVST+ and RPVST+)
2.6.2 STP root bridge selection
2.7. Configure, verify and troubleshoot STP related optional features
2.7.1 PortFast
2.7.2 BPDU guard
2.8. Configure and verify Layer 2 protocols
2.8.1 Cisco Discovery Protocol
2.8.2 LLDP

2.9. Configure, verify, and troubleshoot (Layer 2/Layer 3) EtherChannel
2.9.1 Static
2.9.2 PAGP
2.9.3 LACP

2.10. Describe the benefits of switch stacking and chassis aggregation

WORK 2.0 - LAN Switching Technologies

2.1. Describe and verify switching concepts
2.1.1 MAC learning and aging
2.1.2 Frame switching
2.1.3 Frame flooding
2.1.4 MAC address table

2.2. Interpret Ethernet frame format

2.3. Troubleshoot interface and cable issues (collisions, errors, duplex, speed)

2.4. Configure, verify, and troubleshoot VLANs (normal/extended range) spanning multiple switches
2.4.1 Access ports (data and voice)
2.4.2 Default VLAN

2.5. Configure, verify, and troubleshoot interswitch connectivity
2.5.1 Trunk ports
2.5.2 Add and remove VLANs on a trunk
2.5.3 DTP, VTP (v1&v2), and 802.1Q
2.5.4 Native VLAN

2.6. Configure, verify, and troubleshoot STP protocols
2.6.1 STP mode (PVST+ and RPVST+)
2.6.2 STP root bridge selection

2.7. Configure, verify and troubleshoot STP related optional features
2.7.1 PortFast
2.7.2 BPDU guard

WORK 3.0 - Routing Technologies

3.1. Describe the routing concepts
3.1.1 Packet handling along the path through a network
3.1.2 Forwarding decision based on route lookup
3.1.3 Frame rewrite

3.2. Interpret the components of a routing table
3.2.1 Prefix
3.2.2 Network mask
3.2.3 Next hop
3.2.4 Routing protocol code
3.2.5 Administrative distance
3.2.6 Metric
3.2.7 Gateway of last resort

3.3. Describe how a routing table is populated by different routing information sources
3.3.1 Admin distance

3.4. Configure, verify, and troubleshoot inter-VLAN routing
3.4.1 Router on a stick
3.4.2 SVI

3.5. Compare and contrast static routing and dynamic routing

3.6. Compare and contrast distance vector and link state routing protocols

3.7. Compare and contrast interior and exterior routing protocols

3.8. Configure, verify, and troubleshoot IPv4 and IPv6 static routing
3.8.1 Default route
3.8.2 Network route
3.8.3 Host route
3.8.4 Floating static

3.9. Configure, verify, and troubleshoot single area and multi-area OSPFv2 for IPv4
(excluding authentication, filtering, manual summarization, redistribution, stub, virtual-link, and LSAs)

3.10. Configure, verify, and troubleshoot single area and multi-area OSPFv3 for IPv6
(excluding authentication, filtering, manual summarization, redistribution, stub, virtual-link, and LSAs)
3.11. Configure, verify, and troubleshoot EIGRP for IPv4 (excluding authentication, filtering, manual summarization, redistribution, stub)

3.12. Configure, verify, and troubleshoot EIGRP for IPv6 (excluding authentication, filtering, manual summarization, redistribution, stub)

3.13. Configure, verify, and troubleshoot RIPv2 for IPv4 (excluding authentication, filtering, manual summarization, redistribution)

3.14. Troubleshoot basic Layer 3 end-to-end connectivity issues

WORK 4.0 - WAN Technologies

4.1. Configure and verify PPP and MLPPP on WAN interfaces using local authentication

4.2. Configure, verify, and troubleshoot PPPoE client-side interfaces using local authentication

4.3. Configure, verify, and troubleshoot GRE tunnel connectivity

4.4. Describe WAN topology options

4.4.1. Point-to-point

4.4.2. Hub and spoke

4.4.3. Full mesh

4.5. Single vs dual-homed Describe WAN access connectivity options

4.5.1. MPLS

4.5.2. Metro Ethernet

4.5.3. Broadband PPPoE

4.5.4. internet VPN (DMVPN, site-to-site VPN, client VPN)

4.6. Configure and verify single-homed branch connectivity using eBGP IPv4 (limited to peering and route advertisement using Network command only)

4.7. Describe basic QoS concepts

4.7.1. Marking

4.7.2. Device trust

4.7.3. Prioritization

4.7.3.1. Voice

4.7.3.2. Video

4.7.3.3. Data

4.7.4. Shaping

4.7.5. Policing

4.7.6. Congestion management

issues involving DNS

5.3. Configure and verify DHCP on a router (excluding static reservations)

5.3.1. Server

5.3.2. Relay

5.3.3. Client

5.3.4. TFTP, DNS, and gateway options

5.4. Troubleshoot client- and router-based DHCP connectivity issues

5.5. Configure, verify, and troubleshoot basic HSRP

5.5.1. Priority

5.5.2. Preemption

5.5.3. Version

5.6. Configure, verify, and troubleshoot inside source NAT

5.6.1. Static

5.6.2. Pool

5.6.3. PAT

5.7. Configure and verify NTP operating in a client/server mode

WORK 6.0 - Infrastructure Security

6.1. Configure, verify, and troubleshoot port security

6.1.1. Static

6.1.2. Dynamic

6.1.3. Sticky

6.1.4. Max MAC addresses

6.1.5. Violation actions

6.1.6. Err-disable recovery

6.2. Describe common access layer threat mitigation techniques

6.2.1. 802.1x

6.2.2. DHCP snooping

6.2.3. Nondefault native VLAN

6.3. Configure, verify, and troubleshoot IPv4 and IPv6 access list for traffic filtering

6.3.1. Standard

6.3.2. Extended

6.3.3. Named

6.4. Verify ACLs using the APIC-EM Path Trace ACL analysis tool

6.5. Configure, verify, and troubleshoot basic device hardening

6.5.1. Local authentication

6.5.2. Secure password

6.5.3. Access to device

6.5.3.1. address

6.5.3.2. Telnet/SSH

6.5.3.3. Login banner

6.6. Describe device security using AAA with TACACS+ and RADIUS

WORK 5.0 - Infrastructure Services

5.1. Describe DNS lookup operation

5.2. Troubleshoot client connectivity

Internetworking (Virtual), 2021-4
7. **WORK 7.0 - Infrastructure Management**

7.1. Configure and verify device-monitoring protocols
    7.1.1 SNMPv2
    7.1.2 SNMPv3
    7.1.3 Syslog

7.2. Troubleshoot network connectivity issues using ICMP echo-based IP SLA

7.3. Configure and verify device management
    7.3.1 Backup and restore device configuration
    7.3.2 Using Cisco Discovery Protocol or LLDP for device discovery
    7.3.3 Licensing
    7.3.4 Logging
    7.3.5 Time zone
    7.3.6 Loopback

7.4. Configure and verify initial device configuration

7.5. Perform device maintenance
    7.5.1 Cisco IOS upgrades and recovery (SCP, FTP, TFTP, and MD5 verify)
    7.5.2 Password recovery and configuration register

7.6. File system management
    Use Cisco IOS tools to troubleshoot and resolve problems
    7.6.1 Ping and traceroute with extended option
    7.6.2 Terminal monitor
    7.6.3 Log events
    7.6.4 Local SPAN

7.7. Describe network programmability in enterprise network architecture
    7.7.1 Function of a controller
    7.7.2 Separation of control plane and data plane
    7.7.3 Northbound and southbound APIs

---

**Committee Identified Academic Skills**

The technical committee has identified that the following academic skills are embedded in this contest.

**Math Skills**
- Use proportions and ratios to solve practical problems.
- Solve problems using proportions, formulas, and functions.
- Binary number systems.
- Bitwise shifting binary numbers.
- Boolean logic functions.

**Science Skills**
- Plan and conduct a scientific investigation.
- Use knowledge of mechanical, chemical, and electrical energy.
- Use knowledge of heat, light, and sound energy.
- Use knowledge of the nature and technological applications of light.
- Use knowledge of principles of electricity and magnetism.
- Use knowledge of static electricity, current electricity, and circuits.

**Language Arts Skills**
- Provide information in oral presentations.
- Demonstrate use of such verbal communication skills as word choice, pitch, feeling, tone, and voice.
- Demonstrate use of such nonverbal communication skills as eye contact, posture, and gestures using interviewing techniques to gain information.
- Demonstrate comprehension of a variety of informational texts.
- Understand source, viewpoint, and purpose of texts.
- Demonstrate knowledge of appropriate reference materials.
- Use print, electronic databases, and online resources to access information in books.
and articles.
• Demonstrate informational writing.

Connections to National Standards
State-level academic curriculum specialists identified the following connections to national academic standards.

Math Standards
• Numbers and operations.
• Problem solving.
• Reasoning and proof.
• Communication.
• Connections.
• Representation.

Source: NCTM Principles and Standards for School Mathematics. For more information, visit: www.nctm.org.

Science Standards
• Understands the sources and properties of energy.
• Understands forces and motion.
• Understands the nature of scientific inquiry.

Source: McREL compendium of national science standards. To view and search the compendium, visit: www2.mcrel.org/compendium/browse.asp.
Championships for 2021

Special Instructions to Contestants

Due by April 1, 2021

Date submitted: 3/8/2021

Contest Name: Internetworking

Chairperson: James Verity

List any new special instructions for the contestants that are not listed or might be changed from the New York SkillsUSA Technical Standards for 2020. If you have updated your standards for your contest there should not be much of a need for this form. DO NOT list requirements already printed in the NYS standards.

Only Special Instructions received by April 1, 2021 will be posted on the website!!!

Deleted Materials & Supplies:

Additional Materials & Supplies:

Internet Access, CISCO Packet Tracer 8.0 (Free Download)
https://www.netacad.com/courses/packet-tracer

Other: